Evaluation of Ultrafine (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni Composites Prepared Using a Stabilized (Ti,Mo,W,Nb,Zr,Ta)(CN) Phase > Mineral Resources Research > R&D Activities > KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
본문 바로가기 사이트 메뉴 바로가기 주메뉴 바로가기

주메뉴영역


KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
THE WORLD'S LEADING RESEARCH
INSTITUTE OF GEOSCIENCE

R&D Activities

Vision & Mission Organization MOU Status Brochure KIGAM GUIDE

EVALUATION OF ULTRAFINE (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni COMPOSITES PREPARED USING A STABILIZED (Ti,Mo,W,Nb,Zr,Ta)(CN) PHASE

Nanocrystalline (Ti,Mo,W,Nb,Zr,Ta)(CN) powders were prepared via the carbothermal reduction of a high–energy ball–milled mixture of oxides and graphite. It was observed that the growth of stabilized (Ti,Mo,W,Nb,Zr,Ta)(CN) was suppressed effectively during liquid–phase sintering while maintaining the grain size on an ultrafine scale (below 300 nm). The hardness (max. 16.4 GPa) of the (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni composites prepared using the stabilized (Ti,Mo,W,Nb,Zr,Ta)(CN) was superior to that (max. 13.2 GPa) of the conventional Ti(CN)–Mo2C–WC–Nb(CN)–Zr(CN)–TaC–Ni composite. Most of the fractures occurred along the interfaces between the (Ti,Mo,W,Nb,Zr,Ta)(CN) and Ni in the (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni composites, whereas transgranular fractures primarily arise in the conventional Ti(CN)–Mo2C–WC–Nb(CN)–Zr(CN)–TaC–Ni composite during failure.


Fig. 1. FE–SEM micrographs (backscattered electron images) of (a) a conventionally prepared Ti(CN)–Mo2C–NbC–WC–ZrC–TaC–Ni composite and ultrafine (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni composites prepared using nanocrystalline (Ti,Mo,W,Nb,Zr,Ta)(CN) powders Fig. 1. FE–SEM micrographs (backscattered electron images) of (a) a conventionally prepared Ti(CN)–Mo2C–NbC–WC–ZrC–TaC–Ni composite and ultrafine (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni composites prepared using nanocrystalline (Ti,Mo,W,Nb,Zr,Ta)(CN) powders

Fig. 2. Mechanical properties of a conventionally prepared Ti(CN)–Mo2C–NbC–WC–ZrC–TaC–Ni composite and ultrafine (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni composites prepared using nanocrystalline (Ti,Mo,W,Nb,Zr,Ta)(CN) powders. Fig. 2. Mechanical properties of a conventionally prepared Ti(CN)–Mo2C–NbC–WC–ZrC–TaC–Ni composite and ultrafine (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni composites prepared using nanocrystalline (Ti,Mo,W,Nb,Zr,Ta)(CN) powders.

Fig. 3. FE–SEM micrographs of the fracture surfaces of a conventionally prepared Ti(CN)–Mo2C–NbC–WC–ZrC–TaC–Ni composite and ultrafine (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni composites prepared using nanocrystalline (Ti,Mo,W,Nb,Zr,Ta)(CN) powders Fig. 3. FE–SEM micrographs of the fracture surfaces of a conventionally prepared Ti(CN)–Mo2C–NbC–WC–ZrC–TaC–Ni composite and ultrafine (Ti,Mo,W,Nb,Zr,Ta)(CN)–Ni composites prepared using nanocrystalline (Ti,Mo,W,Nb,Zr,Ta)(CN) powders

TOP